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Abstract. In this paper machine learning was used to predict hepatitis-

caused mortality in a way that is analytically robust and clinically relevant. 

Specifically, predictor variables in the dataset were used to generate new 

features based on clinical guidelines on test result thresholds and risk levels. 

The model was optimized to maximize area under the receiver operator 

curve, which arguably has more clinical relevance. Finally, models were 

tested for performance on a holdout sample that never served as part of any 

training set, serving as a proxy for expected out-of-sample performance. 

Using this guideline-inspired feature engineering and a model ensembling 

approach, we found that our particular model has an AUC of 98% and an 

accuracy of 96.77% in the holdout data. Based on this, our approach may 

serve as a first step in integrating machine learning models with clinical 

decision-making. 
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1 Introduction 

Hepatitis is a costly disease, both in terms of lost quality of life and the cost of 
treatments. With recent advancements in treating chronic hepatitis, there is 
renewed interest in determining the point at which the cost of treatments are 
offset by improvements in quality-adjusted life years [22, 10, 31]. Additionally, 
calls for preemptive screening to allow for early detection and intervention have 
been made for both prison populations [21] and the general public [13]. 

Critical to these estimates is the ability to predict the survival of patients with 
hepatitis, both with and without treatment. To that end, many researchers have 
used the University of California at Irvine’s [23] hepatitis dataset to train models 
that predict mortality remarkably well. As discussed more thoroughly in Section 
2, models trained on this dataset frequently predict mortality with over 90% 
accuracy. A number of researchers have applied new, cutting-edge machine 
learning techniques to the data, and a small cottage industry has emerged in which 



papers incrementally improve on prior results by using ever more sophisticated 
algorithms. 

While model accuracy is an easily understood metric, we argue that the 
modeling approaches listed in Table 1 are wrong in using it as the primary 
benchmark for model success. Prediction accuracy may serve as a simple cross 
model comparison baseline, but it is insufficient if the desire is to use a model’s 
prediction in a clinical scenario. For example, in the UCI hepatitis dataset, 123 of 
155 patients live. A totally naive classifier could predict ‘live’ for every patient and 
have an accuracy of 79.4%. In practice, a medical professional needs to know a 
model’s predicted classification, its confidence in that classification, and its ability 
to discriminate among the response classes. Model accuracy is inadequate in this 
sense - we contend that model Area under the Receiver Operating Curve (ROC) is 
a better measure of a model’s predictive performance. 

Furthermore, we incorporate features engineered based on clinical guidelines 
in our model. While previous approaches have engaged in a variety of feature 
engineering techniques, we have found minimal initial application of domain 
expertise in the generation of these features. It is possible that rules- and tree-
based classification techniques would discover some of these rules and boundaries 
on their own. However, by including them before any algorithms touch the data, 
we ensure that clinically significant data is considered in all of our models. We also 
perform feature generation through association rules. 

Finally, we note that we tune our model’s hyper-parameters using ten-fold 
cross-validation on the training set but evaluate its performance on a 20% holdout 
sample. This practice is rare but gives much higher confidence about its future 
performance on new cases. Prior research has used both cross-validation results 
from the entire dataset and summaries of the model’s success on the training data 
with no metrics to predict out-of-sample predictive power. 

This paper proceeds as follows: In Section 2 we first survey the latest 
approaches in modeling the UCI hepatitis data and further highlight areas in which 
we believe the analysis should be extended. In Section 3 we then provide a brief 
clinical background on hepatitis’s effects on the body and the significance of the 
test results provided in the UCI dataset. In Section 4 we discuss our modeling 
approach and measures of performance. The final section concludes and proposes 
further areas for research. 

2 Previous Approaches and Performance Metrics Using UCI 

Hepatitis Data 

The UCI Hepatitis dataset has been used many times in prior research, both as one 
example among many in demonstrating a new statistical model or algorithm [12, 
27, 30] and as a dataset of particular interest for optimizing model performance 
due to its medical relevancy. A selection of hepatitis-focused machine learning 
papers is presented in Table 1. Among this group, approaches can be divided based 



on whether they use all observations in the dataset or subset to only cases with 
complete data on included features. Though some results worked best on only a 
subset of data [33], more recent endeavors have yielded high predictive accuracy 
using the whole dataset [1,16,7,28,29,4,8,6,26]. 

Additionally, results differ in the method used to estimate a model’s out-of-
sample performance. Many papers use a standard 10-fold cross-validation 
technique. Others use a traditional 80-20 or 60-40 train-test split of the data. Of 
particular interest, we highlight the work of Chen et al [8] who use an 80-20 split 
and a 10-fold cross-validation to find the best hyper-parameters in the training 
set; they then deploy the model and evaluate its performance on the 20% holdout 
sample. As we explain more thoroughly in Section 4.2, this performance on holdout 
data is especially compelling and reassuring in terms of out-of-sample 
performance. 

Finally, authors have various metrics available to demonstrate model 
performance. Across the papers listed in Table 1, model accuracy is the universal 
choice. While accuracy is a straightforward and easily understandable metric of a 
model’s performance, it masks underlying uncertainty about edge cases as well as 
the model’s confidence in its classification across the spectrum of predicted 
probabilities. From the perspective of a physician receiving a model’s prediction 
of mortality on a new case, simply knowing that a model is correct 95% of the time 
in the aggregate is insufficient; she needs to know the confidence in a specific case’s 
prediction, which would be better conveyed by knowing the model’s classification 
ability along its ROC curve. 

When optimizing model predictive accuracy, an analyst has two resources at 
his or her disposal. First, feature engineering can help create highly informative 
model inputs that have strong correlation with the output of interest. Second, the 
machine learning model itself can be as complex as desired, ranging from simple 
decision trees to highly sophisticated neural networks or evolutionary learning 
models. Both aspects of modeling are important and have their associated costs in 
time and computing power. 

We argue that the feature-engineering aspect has been underappreciated in 
this context. Table 1 is rich with papers demonstrating cutting-edge algorithms 
that find relationships between the dataset’s feature set and its death indicator. 
When features are engineered on top of those in the dataset, they are created 
through principal components analysis, dimensionality reduction, or data-driven 
association rules [29, 28, 8, 16]. Largely missing from them, however, is a 
discussion of how and why any input features were manipulated and expanded to 
produce their predictive results. By performing a variety of straightforward 
feature engineering transformations of the data, as well as coding cut-points and 
indicator variables based on medical guidelines (explained in Section 3) we are 



able to achieve a predictive accuracy of 96.77% and an AUC of 0.98 using standard 
machine learning techniques. 

Author Accuracy Performance 
Derivation 

Data Coverage Main Impact 

Afif, Hedar, 
Hamid, and 
Mahdy[1] 

98.75 10-fold CV Full Method (3SVM) 

Polat and 
Gunes 
2007[29] 

94.12 10-fold CV Full Method (PCA- 
AIRS) 

Polat and 
Gunes 
2006[28] 

92.59 10-fold CV Full Method (FS-AIRS) 

Bascil and 
Temurtas[6] 

91.87 10-fold CV Full Method (MLNN) 

Chen, Liu, 

Yang, Liu, and 

Wang[8] 

96.77 31 observation 

test sample 
Full Method (LFDA- 

SVM) 

Dogantekn, 

Dogantekin, 

and Avci[16] 

94.16 60 observation 

test sample 
Full Method (LDA- 

ANFIS) 

Neshat, 
Sargolzaei, 
Toosi, and 
Masoumi[26] 

93.25 Best 

performance of 

500 tests on 

random 25% 

samples 

Full Method (CBR-PSO) 

Calisir and 
Dogantekin[7] 

96.12 Training dataset Full Feature Extraction 
(PCA), Method 
(LSSVM) 

Sartakhti, 
Zangooei, and 
Moza- 
fari[33] 

96.25 10-fold CV 80 Cases Method (SVM-SA) 

Table 1: All papers listed reported accuracy as the primary 

metric of model performance. 

3 Medical Background 

The liver is a complex organ that carries out the metabolism of carbohydrates, 
proteins, and fats. Hepatitis is inflammation of the liver, causing common signs and 
symptoms that include fatigue, flu-like symptoms, abdominal pain, loss of appetite, 
and yellow skin or eyes. Hepatitis B virus (HBV) and hepatitis C virus (HCV) are 
recognized as the most important sources of liver cirrhosis, the final stage of 
various chronic liver diseases [32]. 

Since some of the enzymes and end products of the metabolic pathway are 
sensitive to liver damage, they may be considered as biochemical markers of liver 



dysfunction [20]. The liver enzymes, aspartate aminotransferase (AST, formerly 
called SGOT), alanine aminotransferase (ALT), gamma-glutamyl transferase, and 
alkaline phosphatase, are widely used to detect the liver damage. Bilirubin, 
albumin, and prothrombin time are the liver function test for evaluating patients 
with hepatitis. In general, an abnormal serum albumin or prothrombin time may 
be seen in patients with impaired hepatic synthetic function. Serum bilirubin 
measures the liver’s ability to detoxify metabolites and transport organic anions 
to bile. Elevations of liver enzymes (SGOT and alkaline phosphatase) can reflect 
damage to the liver or biliary obstruction. In this hepatitis dataset, some of the 
biochemical markers, such as serum bilirubin, albumin, SGOT, alkaline 
phosphatase, and prothrombin time, are useful in predicting the mortality of 
patients with hepatic dysfunction. 

Although the Child-Pugh score (or the Child-Turcotte-Pugh) was originally 
used to predict mortality during surgery, it is now commonly used to assess the 
prognosis of chronic liver disease. The Child-Pugh score evaluates five clinical 
measures of liver disease: bilirubin, albumin, prothrombin time, ascites, and 
encephalopathy [11]. 

Measure 1 point 2 points 3 points 

Total bilirubin, mol/L (mg/dL) <34 (<2) 34—50 (2—3) >50 (>3) 

Serum albumin, g/dL >3.5 2.8—3.5 <2.8 

Prothrombin time, prolongation (s) <4.0 4.0—6.0 >6.0 

Ascites None Mild Moderate to severe 

Hepatic encephalopathy None Grade I—II Grade III—IV 
Table 2: 5 clinical measures of the Child-Pugh score. 

The Child-Pugh score has proved useful in estimating the prognostic index of 
survival for decades. Suarez et al.[34] conducted a study in 144 patients with liver 
cirrhosis and transplant candidates to evaluate Child-Pugh stages. The results 
showed that the Child-Pugh score and spontaneous bacterial peritonitis were 
independent predictors of survival. While not included in the dataset, these 
findings indicate that the Child-Pugh score may be valuable for the feature-
engineering stage. 

Beside liver enzymes and liver function tests, there are other variables 
associated with mortality caused by chronic hepatitis disease. For example, 
mortality is significantly related to gender. According to research by Weissberg et 
al. [37], women had less severe liver disease than men, based on the survival in 
chronic hepatitis B on 379 patients. Szpakowski and Tucker [35] also confirmed 
HBV-related mortality was four times more common in males than in females. 
Taylor et al. [36] systematically reviewed the literature and found 41 articles 



suggesting that cirrhosis, higher HBV viral level, and male sex were consistently 
associated with a significantly increased risk of death and liver cancer. 

The severity and poor prognosis of various liver diseases is also associated 
with age. Based on a study of 6,689 patients infected with HBV, Szpakowski and 
Tucker [35] also found that the mortality of HBV increased markedly with 
increasing age over 40 in males and over 50 in females. The death rate for these 
patients increased markedly with age, and approximately 40 percent of all deaths 
in subjects over the age of 40 were HBV-related. For the age-specific prognosis 
following spontaneous hepatitis B e antigen (HBeAg) seroconversion research in 
chronic hepatitis B, Chen et al. [9] compared prognosis on patient groups with 
different ages. They found that patients with HBeAg seroconversion before age 30 
have an excellent prognosis. 

The prognosis of liver damage, however, cannot be simply identified with 
reliability on the basis of a single assessment; serial testing is always helpful. Based 
on the survival research in chronic hepatitis B on 379 patients, the patients 40 or 
older with total bilirubin level of 1.5 mg/dl (25 mmol/L) or more, ascites, and 
spider nevi were identified at a higher risk of death [37]. De Jongh et al. [14] 
reported that the duration of survival was significantly associated with age, serum 
aspartate aminotransferase levels, presence of esophageal varices, and all five 
components of the Child-Pugh index. They also identified that age, ascites, and 
total serum bilirubin level were the most powerful prognostic indicators after 
multivariate analysis. To discover the interesting patterns among the variables 
ourselves, we applied association rules to identify strong rules/relations in the 
feature-engineering stage. 

4 Modeling Approach 

4.1 Metric Selection 

Much of the previous research has emphasized model accuracy, the proportion of 
correct predictions, as the performance metric. We argue that accuracy alone does 
not convey a full picture of the model performance for several reasons. First, most 
classifiers produce a probability estimation along with a label of the class 
prediction and unfortunately, this information is not utilized when calculating 
accuracy. Accuracy does not consider the probability—only the label assigned—
which leads to an easily overlooked subtle nuance: how does one assign a label? 

If a label is assigned by whichever class has the higher probability, then the 
decision threshold to determine class labeling is 0.5. There are other approaches 
for selecting the appropriate decision value, such as picking a threshold to 
maximize the F1-score, precision, or recall, but all of them consist of relatively 
weighing whatever information the analyst deems important to consider. When 
separate experiments are run with accuracy as the metric, an unbiased 
comparison of model performance cannot be made unless the metric used to 



determine the decision threshold is also reported and consistent among 
experiments. 

Threshold aside, the metric can also be undermined when faced with 
imbalanced class sizes, and given the class sizes in the hepatitis dataset, this 
concern should not be overlooked. The signal in the majority class can overwhelm 
the minority class, and if this is not taken into account, a model favoring the 
majority class can appear to be a better classifier at first glance. Consider the 
following confusion matrices for a hypothetical dataset with 90 instances for one 
class and 10 for another. With such a difference in class sizes, even a naive 
classifier can appear to be a strong performer, as demonstrated in Table 3. 

 

 Predicted Positive Predicted Negative 

Actually Positive 0 10 

Actually Negative 0 90 
Table 3: An example of an unintelligent majority class classifier. 

While a useless classifier, it yields an accuracy of 0.9. A more intelligent 
classifier will likely have both false positives and false negatives, but accuracy as a 
single number is unable to convey this. Indeed, in Table 4, the model’s accuracy is 
only 0.85 even though the model attempted to learn more of the underlying 
relationship. Thus, accuracy alone can be a misleading representation of the 
efficacy of a model when class sizes are not balanced. 

 Predicted Positive Predicted Negative 

Actually Positive 5 5 

Actually Negative 10 80 
Table 4: An example of a learning classifier. 

With these considerations in mind, we propose instead to measure a model on 
the AUC (Area under the Curve) of the ROC. Accuracy is based on a single decision 
threshold, whereas a ROC curve calculates all possible thresholds and graphs the 
false positive rate against the true positive rate. The AUC is the area under the 
resulting curve and can be interpreted as the probability that a classifier will rank 
a randomly chosen positive instance higher than a randomly chosen negative 
example. The AUC can be calculated [24] as 



  (1) 

Where n0 and n1 are the numbers of positive and negative records respectively, 
and S is the sum of the ranks of all positive examples in the list.  

As an example, the following table shows a ranked list with five positive examples 
and five negative examples. The labels are sorted in order of the probability, and 
we would expect a good classifier to have perfect separation between the class 
labels. 

Actual Class Label - - - - + - + + + + 

Rank of Label 1 2 3 4 5 6 7 8 9 10 

Rank of Positive Label     5  7 8 9 10 

Table 5: A table demonstrating expected AUC rank. 

The AUC for these records is equal to 

  (2) 

This calculation demonstrates that AUC is a measure for the quality of ranking; 
the more positive examples are ranked higher, the larger S becomes. Thus, it 
measures the classifiers skill in ranking a set of patterns according to the degree 
to which they belong to the positive class without actually assigning patterns to 
classes. From an actionability standpoint, we argue that this measure is more 
insightful: while decision makers may want to know how accurate the model is for 
a point estimate, the degree of confidence is also quite important. If a model has 
high accuracy but most labels were near the decision boundary and thus with a 
little variation could have been changed, decision makers may be less prone to 
accept a model over one that is more confident in the strength of its labeling. 

4.2 Holdout Data for Generalization 

In addition to AUC, we also employ a holdout set for additional confidence in true 
model performance. K-Fold cross validation is typically used to give an estimate of 
how well the model generalizes to new, unseen data. This is achieved by splitting 
the data into separate datasets, typically 5-10, calculating the error on each fold by 
using the other k-1 folds as training data and averaging across the folds for a final 
estimate on an accuracy metric. 



 

Fig.1: Percentage of data allocated to the hold-out set. 

However, this is seldom done only once. Instead, this is repeated several times 
with different values of the model’s hyper parameters. The final model is chosen 
by selecting the hyper parameters that perform best. While this does give an idea 
of the generalization error, since the hyper parameters are also tuned in this stage 
by, a true measure of generalization is rarely achieved. 

While it is a subtle dependence, this can lead to over fitting to the holdout 
dataset. In practice, decision makers rarely want to learn from the past; they would 
rather deploy a model to predict on future events. For a truly useable model, then, 
model generalization must be prioritized. To that effect, we kept an additional 
holdout set to use for final reporting of model performance. We split the data into 
training, cross validation testing, and holdout testing, with the final metric 
calculated on the holdout dataset to represent how well we expect the data to 
generalize to future unseen observations. 

4.3 Data set 

The hepatitis dataset in this study is from UCI machine learning repository, which 
included 155 samples with 20 attributes (14 binary and 6 numeric attributes). The 
objective of this dataset is to identify or predict whether patients with hepatitis 
are alive or not (1 for deceased and 2 for alive). The binary attributes and numeric 
attributes of dataset have been shown in Tables 6 and 7. 

As for the numeric attributes, bilirubin is the catabolic product of hemoglobin 
produced within the reticuloendothelial system and is released in an unconjugated 
form before being transported to the liver. In the liver, UDP-glucuronyltransferase 
conjugates the water-insoluble unconjugated bilirubin to glucuronic acid, and 
conjugated bilirubin is in turn excreted into the bile [17]. The higher levels of 
serum bilirubin are observed in viral hepatitis, hepatocellular damage or toxic 
liver injury [20]. Serum albumin is produced by hepatocytes in the liver and forms 
a large proportion of all plasma protein. Normal range of serum albumin in adults 



is 3.5 to 5 g/dL. Hepatic synthesis of albumin is decreased in end-stage liver 
disease [19]. Therefore, serum albumin levels are useful in monitoring liver 
synthetic activity. 

Aspartate aminotransferase (SGOT or AST) is one of the aminotransferases and 
is highly concentrated in the liver. Normal serum AST is 0 to 35 U/L. The liver cells 
spill the SGOT into the blood, increasing the enzyme levels in the blood when the 
liver is damaged (as in viral hepatitis). Therefore, SGOT is often used to help 
monitor potential liver damage from the hepatitis. A damaged liver, acute or 
chronic, eventually causes an increase in serum concentration of 
aminotransferases [19]. 

Alkaline phosphate (ALP) is an enzyme that transports metabolites across cell 
membranes. It presents in mucosal epithelia of the small intestine, proximal 
convoluted tubule of kidney, bone, liver, and placenta [20]. The most common 
causes of pathological elevation of ALP levels include liver and bone disease [18]. 

Binary Attribute 1 2 Missing 

Class Die: 32 (20.6%) Live: 123 (79.4%) 0 (0.0%) 

Sex Male: 139 (89.7%) Female: 16 (10.3%) 0 (0.0%) 

Steroid No: 76 (49.0%) Yes: 78 (50.3%) 1 (0.7%) 

Antivirals No: 24 (15.5%) Yes: 131 (84.5%) 0 (0.0%) 

Fatigue No: 100 (64.5%) Yes: 54 (34.8%) 1 (0.7%) 

Malaise No: 61 (39.4%) Yes: 93 (60.0%) 1 (0.7%) 

Anorexia No: 32 (20.6%) Yes: 122 (78.7%) 1 (0.7%) 

Liver Big No: 25 (16.1%) Yes: 120 (77.4%) 10 (6.5%) 

Liver Firm No: 60 (38.7%) Yes: 84 (54.2%) 11 (7.1%) 

Spleen Palpable No: 30 (19.4%) Yes: 120 (77.4%) 5 (3.2%) 

Spiders No: 51 (32.9%) Yes: 99 (63.9%) 5 (3.2%) 

Ascites No: 20 (12.9%) Yes: 130 (83.9%) 5 (3.2%) 

Varices No: 18 (11.6%) Yes: 132 (85.2%) 5 (3.2%) 

Histology No: 85 (54.8%) Yes: 70 (45.2%) 0 (0.0%) 
Table 6: Details of binary attributes in hepatitis dataset 

4.4 Feature Engineering 

Much of the literature focuses on modeling based off the original data, focusing 
instead on fine tuning the algorithm. While important, feature engineering is a 
valuable process that allows for additional insight. Many contests on Kaggle, a 
machine learning competition website, credit creative feature engineering as a 
main component of the winning algorithms. Indeed, the highest scoring model 



Numeric Attribute Min Max Mean Median StdDev Missing 

Age 7 78 41.2 39 12.57 0 (0.0%) 

Bilirubin 0.3 8 1.43 1.0 1.21 6 (3.9%) 

Alk Phosphate 26 295 105.33 85 51.51 29 (18.7%) 

SGOT (AST) 14 648 85.89 58 89.65 4 (2.6%) 

Albumin 2.1 6.4 3.82 4 0.65 16 (10.3%) 

Protime 0 100 61.85 61 22.88 67 (43.2%) 
Table 7: Details of numeric attributes in hepatitis dataset 

on the hepatitis dataset included over 200 variables engineered from rule mining 
to add additional nuance to the data. Feature engineering can range from basic 
transformations of the data to the creation of new variables utilizing additional 
information. For this study, both avenues were explored, with variable 
transformations being applied at the modeling stage, outlined in section 4.5. 

For novel feature engineering, insight gained from medical literature was 
utilized. Since age seemed to be an important factor in prognosis, patients were 
grouped based on different age ranges with ≤30, 31-40, 41-60, and >60 in the 
dataset. New score variables of bilirubin, albumin, and ascites were also calculated 
based on Child-Pugh score. Given that the missing-ness rate of prothrombin time 
was high, approximately 43 percent, and hepatic encephalopathy was not included 
in the dataset, these variables were not included in the score calculations. Ascites 
was recorded as either ‘yes’ or ‘no’ in the data; we mapped 1 point for ‘no’ and 3 
points for ‘yes.’ We also created new level variables of bilirubin, albumin, SGOT, 
and alkaline phosphate based on the value. 

Binning of the numerical variables was also employed to group high and low 
levels together. Bilirubin was grouped with three levels based on the numerical 
ranges <1.2, 1.2-2.5, and >2.5. Albumin level was grouped into four categories, 
<3.0, 3.0-3.4, 3.5-4.5, and >4.5. The new SGOT-level variable was grouped at 0-40, 
41-100, 101-199, 200-400, and >400. Finally, there were two levels for variable 
ALP-levels: <112 and 112-300. 

To identify the potential interesting patterns among variables, we applied 
association rules in feature engineering. The Association Rules algorithm is a 
rules-based machine learning method to uncover how variables are associated to 
each other. The association rules are formally defined as [2]: Let I = {i1,i2,· · ·,in} be 
a set of items, and D = {t1,t2,· · ·,tm} be a set of transactions, where each transaction 
t is a set of items such that t ⊆ I. A transaction t is said to contain X, a set of items 
in I, if X ⊆ t. An association rule is an implication of the form X → Y, where X,Y ⊆ I 
and X ∩ Y = Φ. It shows that the presence of X in a transaction will imply the 
presence of Y. Association rules are intended to identify strong rules in the dataset 
based on the measures of interestingness. Support, confidence, and lift are three 



most common ways to measure association to select interesting rules from all 
possible rules. 

Support is about how frequently an itemset is in the dataset, as measured by 
the proportion of transactions which contain X. It can measure the significance or 
importance of an itemset. 

  (3) 

Confidence is an indication of how likely item Y is purchased when item X is 
purchased. It is measured by the proportion of transactions with item X in which 
item Y also appears. Confidence gives different values for the rules X ⇒ Y and Y ⇒ 
X. 

  (4) 

Support and confidence are evaluated to determine whether a rule should be 
kept in two steps. In the first step, support is used to find frequent (significant) 
itemsets that meet the minimum support constraint. Then confidence is used in 
the next step to produce rules from the frequent itemsets that exceed a minimum 
confidence constraint [2]. 

Lift measures how many times more often X and Y occur together than 
expected if they were statistically independent. If lift equals 1 for the rule, it 
implies that the probability of occurrence of the antecedent and that of the 
consequent are independent of each other, i.e., no association between items. A lift 
value greater than 1 means that item Y is likely to be bought if item X is bought and 
that those rules are potentially useful for predicting the consequent. A value less 
than 1 means that item Y is unlikely to be bought if item X is bought. 

  (5) 

The algorithm produced thousands of association rules with support=0.02 and 
confidence=0.80 in this hepatitis dataset, which made it very difficult to analyze or 
identify those interesting/useful ones. To overcome this problem, another 
constraint of interest measures (chi-square) was also applied. Chi-square is used 
to test for independence between the left-hand-side (LHS) and right-hand-side 
(RHS) of the rule [25]. It is computed from a 2 by 2 table. For the rule L ⇒ R, the 
counts in this table are the number of transactions containing L and R; L but not R; 
not L but R; and not R and not L. 

After pruning the discovered association rules with lift and chi-square 
threshold, we focused on the essential relationships and selectively created 24 
relevant rules as our new variables. Part of the generated rules are listed in the 
table below. 

Missing data was also taken into consideration, since much of the literature 
either imputes the missing values with the means or discarded rows or columns 



with missing data all together. While a commonly used approach, this does not 
explore the potential significance of the data being missing in the first place. If 
there is a mechanism behind a variable being missing, such as a doctor preferring 

lhs rhs support confidence lift Chi-Square 

Age group=41-60, 
Ascites=1 

Class=1 0.065 0.909 4.403 4.374 

Age group=41-60, Liver 
Firm=2, Spiders=1 

Class=1 0.065 0.909 4.403 4.374 

Malaise=1 ,Liver Big=2, 
Varices=1, Histology=2 

Class=1 0.052 0.889 4.306 3.329 

Ascites=1, Varices=1 Class=1 0.045 0.875 4.238 2.821 

Age group=41-60, Sex=1, 
Varices=1 

Class=1 0.058 0.818 3.963 3.315 

Liver Big=2, Spiders=1, 
Ascites=1 

Class=1 0.058 0.818 3.963 3.315 

Liver Big=2, Spleen 
Palpable=2, Ascites=1, 

Histology=2 
Class=1 0.058 0.818 3.963 3.315 

Age group=41-60, 
Malaise=1 ,Anorexia=2, 

Histology=2 
Class=1 0.058 0.818 3.963 3.315 

Fatigue=1, Liver Big=2, 
Albumin 

level=<3.0,Histology=2 
Class=1 0.052 0.800 3.875 2.818 

Age group=41-60, 
Spiders=1, Alk Phosphate 

level=<112,Histology=2 
Class=1 0.052 0.800 3.875 2.818 

Table 8: Selected rules based on support, confidence, lift and Chi-square 

not to run a test or not running a test if the results of another test deems it 
unnecessary, it can provide added insight as to why the variable was not recorded. 
Thus, we created binary indicator variables for each column with missing data and 
indicator variables for combinations of variables being missing. After calculating 
all combinations, columns containing redundant missing data patterns were 
removed, which resulted in 90 distinct missing data combinations. 

4.5 Modeling 

With the goal of finding both a highly accurate and highly usable model, a model 
featuring parsimony and robustness was chosen. A parsimonious model is defined 
as having coefficients with smaller absolute values as well as fewer non-zero 
coefficients, which is important for both issues of variable co-linearity and over-
fitting. With a dataset this small, over-fitting is a concern since making a model too 
complex may lead to learning the data present instead of generalizing to future 
data. 



In addition to building several separate, highly usable models, a final model 
consisting of an ensemble of three separate models was created. Since it is possible 
for one model to detect different nuances in a dataset over another, an ensemble 
of several uncorrelated models together can increase accuracy and reduce 
variance [3]. 

Elastic-Net Classifier The Elastic Net is an extension of logistic regression where 
the optimizer attempts to find a parsimonious model through regularization. 
While most classifiers emphasize either an L1 or and L2 penalty, Elastic Net is 
unique in that is utilizes both, with the degree of regularization for both being the 
two main hyper parameters that control the model. It favors fewer coefficients by 
implementing an L1 Lasso and favoring smaller coefficients by utilizing an L2 
Ridge. 

 

Fig.2: Machine learning work-flow for Elastic-Net classifier. 

To implement, categorical variables were first transformed using one-hot 
encoding, which entails creating a binary indicator variable for each unique 
categorical value in the original variable. Numeric variables first had missing 
values imputed and then were standardized. Both the categorical and numeric 
outputs were sent to the Elastic-Net Classifier to generate predictions. 

Nystroem Kernel SVM Support vector machines (SVM) are a class of maximum 
margin classifiers. They seek to maximize the separation they find between classes 
and can include a penalty function that allows misclassification of some 
observations for the sake of wider margins between the classes. As a result, this 
makes the support vector machine a very robust class of machine learning models. 
SVMs can also make use of a kernel function, which allows for a non-linear 
transformation of the data before fitting the SVM. These kernel functions can be 
very useful for transforming a non-linear problem into a linear domain.  

 
Instead of implementing a kernel function directly, we make use of the Nystroem 
method, which is a general method for low-rank approximations of kernels. It 
achieves this by essentially sub-sampling the data on which the kernel is 



evaluated. The advantage of using approximate explicit feature maps compared to 
the kernel trick is that explicit mappings can significantly reduce the cost of 
learning with large datasets. Kernel map approximations allow SVMs to run much 
faster and scale up to bigger datasets, but there is a small trade off in accuracy. 

To implement, categorical variables were first transformed using one-hot 
encoding. For numeric variables, missing values were first imputed with the mean 
value and then two new variables were created for each, one representing the 
standardized values and the other representing the Ridit transformed values. The 
Ridit transform calculates the value’s percentile and then normalizes the value 
such that the mean calculated for the reference population will always be 0 and 
the score will be between -1 and 1. Intuitively, the Ridit transform can be 
interpreted to be an adjusted percentile score. 

 

Fig.3: Machine learning work-flow for Nystroem Kernel SVM classifier. 

Extra Trees Random forests are an ensemble method where hundreds of 
individual decision trees are fit to bootstrapped samples of the original dataset, 
with each tree being allowed to use a random selection of N variables, N being the 
major model hyper-parameter of this algorithm. Ensembling many re-sampled 
decision trees serves to reduce their variance, producing more stable estimators 
that generalize well out-of-sample. Random forests are extremely hard to over-fit, 
very accurate, generalize well, and require little tuning. 

A further refinement of this method is the ExtraTrees model, which is a random 
forest with more randomness: the splits considered for each variable are also 
random. The ExtraTrees model has an additional advantage in that it is 
computationally very efficient: no sorting of the input data is required to find the 
splits because they are random. 

To implement, additional feature engineering was employed to utilize the 
benefits of random forests. Since the algorithm runs quickly, this allows for 
identification of additional insightful variables by running the algorithm on 
variable subsets as an initial first pass. By running a first pass to filter the variables, 



the feature space is reduced for efficient running of the final model. To perform, 
missing values of numerical variables were imputed with means, then ratios and 
differences of each pair of numeric values were calculated as new variables. These 
two sets of variables were then treated as inputs for an ExtraTrees classifier, which 
starts with a baseline model fit to the input datasets numeric variables. The model 
then loops through the generated variables, fitting a model to the numeric 
variables with the new feature added. If the variable improves the test set accuracy 
of the model, the variable is kept. The resulting new variables are then binded back 
to the original dataset for final modeling. 

In addition, categorical values were transformed using one hot encoding. 
Credibility estimates of the categorical values were also calculated as additional 
variables. Credibility theory is a branch of actuarial science designed to quantify 
how unique a particular outcome will be compared to an outcome deemed as 
typical. For machine learning in particular, it can help reduce high-cardinality 
categorical features into more efficient representations, using one hot encoding on 
the transformed data. 

The resulting variables were then supplied as input for a Random Forest model. 

Overleaf 

Fig.4: Machine learning work-flow for ExtraTrees classifier. 

Ensemble Model For a final model, an ensemble of the individual models was 
generated. Ensembling is a useful tool for several reasons [15]. The first is 
statistical: an algorithm can be viewed as searching a space of hypotheses to 
identify the best hypothesis in the space. The statistical problem arises when the 
amount of training data available is too small compared to the size of the 
hypothesis space. Without sufficient data, the algorithm can find many hypotheses 
that give the same training accuracy. By ensembling all the accurate classifiers, the 
algorithm can average their votes and reduce the risk of choosing the wrong 
classifier. 

The second reason for ensembling is computational: many algorithms work by 
performing some type of local search that may get stuck in local optima. In cases 
where there is enough training data so that the statistical problem is absent, it may 



still be difficult computationally for the algorithm to find the best hypothesis. An 
ensemble constructed by running the local search from many different starting 
points may provide a better approximation to the true unknown function. 

Thus, for our final model, an ensemble of the three individual classifiers was 
made. The probabilities of the classifiers was used as input variables to an Elastic 
Net algorithm with only an L2 penalty employed, and the resulting output served 
as a final prediction. While some of the metrics below varied, both the accuracy 
and AUC of the ensemble improved, thus demonstrating the benefit of an 
ensembling approach. 

 

Fig.5: Machine learning work-flow for ensemble classifier. 

 Elastic Net Nystroem Kernel SVM ExtraTrees Ensemble 

F1 Score 0.8333 0.8333 0.8 0.9231 

True Positive Rate 
(Sensitivity) 

0.8333 0.8333 0.6667 1 

False Positive Rate 
(Fallout) 

0.4 0.4 0 0.04 

True Negative Rate 
(Specificity) 

0.96 0.96 1 0.96 

Positive Predictive Value 
(Precision) 

0.8333 0.8333 1 0.8571 

Negative Predictive Value 0.96 0.96 0.9259 1 

Accuracy 0.9355 0.9355 0.9355 0.9677 

Matthews Correlation 
Coefficient 

0.7933 0.7933 0.7857 0.071 



AUC 0.9567 0.9533 0.9467 0.98 
Table 9: Results of approach broken out by individual contributing model and by blending 

the results in an ensemble. 

5 Conclusion 

We have expanded upon previous approaches to predict mortality in the UCI 
hepatitis dataset in a variety of ways. First, we used clinical guidelines to encode 
new features based on known thresholds for tests of enzymes and other 
biochemical markers in the blood. This feature generation ensures that medically 
important data are included in the models. By coding cutpoints and composite 
scores that are consistent with standard medical practice, we provide the models 
with an initial set of variables with the most predictive power possible. 

Second, we used a variety of model families, an ensembling approach, and 
model evaluation using a holdout sample. This ensembling should reduce the risk 
of any single model overfitting the data and skewing predictions on new data. By 
testing our model’s performance on a holdout dataset, we subject our model to a 
level of testing scrutiny not typically seen in prior work on this dataset. By 
following this rigorous method, we are much more confident in our model’s ability 
to accurately classify future cases. 

Finally, we have emphasized our model’s performance on its AUC score, which 
we believe has more validity in measuring the model’s power in an applied setting. 
In situations where the outcome’s classes are unbalanced, as was the case in the 
hepatitis data, accuracy is an inadequate measure of model performance. AUC 
allows for more insight into the model’s confidence of its classification of cases 
near the decision boundary. It is also less susceptible to manipulation of that 
decision boundary. 

While we have focused our analysis on the prediction of hepatitis-related 
mortality using all the features in the dataset, we are aware that there is a crucial 
data element that we have excluded. The UCI dataset contains relative costs 
associated with each input feature; as our focus has been on making a model most 
useful for guiding medical practitioners, future work should include these 
variables. For example, the cost of labwork to obtain readings on bilirubin, AST, 
albumin, prothrombin time, and alkaline phosphate are substantially more than 
the costs to determine a patient’s age, sex, and oral medical history. They also come 
with a time delay in delivery. However, they do share an initial fixed cost for a 
blood draw and processing, so there is a slight economy of scale in ordering 
multiple tests. Future work should examine whether all of these tests are 
necessary or whether a model’s predictive power can be maintained without them. 
Moving forward, though, additional research into whether the missingness of 
these features is random will be needed. 



Along a similar vein, additional provider feedback and integration will be 
necessary to make an analytic tool that is maximally effective in clinical practice. 
Any machine learning output will likely serve as one data consideration among 
many, subject to a provider’s experience and expertise when determining a course 
of treatment. We have focused significant portions of our paper to discussing why 
models should be optimized for the measures that will be most meaningful to 
medical practitioners. In order to make the decision-making process more 
interactive, though, doctors should have input on how the model results are 
presented and also receive information about which features, currently with 
missing data on a given patient, would be most expected to improve predictive 
power if they are obtained. Such a system would transform a provider from a 
passive receiver of a machine’s prediction to an active participant in determining 
which inputs the model receives; if a patient’s prognosis is near the decision 
boundary and the doctor has the authority to order additional tests that may make 
the prediction more confident, the doctor may choose to delay an immediate 
treatment plan in favor of obtaining more data. 

Finally, we observed that our dataset only contains patients with confirmed 
hepatitis. Given the cost of hepatitis treatment (and loss of quality of life if left 
undiagnosed), policymakers must consider whether general screening for 
hepatitis is warranted. Such concerns exist for the population overall but are of 
particular importance among the incarcerated population where hepatitis is both 
more prevalent per capita and also more successfully treated as patients are more 
likely to complete their full series of treatments [5]. By expanding the data to 
include patients with hepatitis across all stages of the disease, from initial 
diagnosis to liver failure, mortality can be predicted more successfully. In addition, 
variables indicating prior treatment plans and related illnesses that can indicate 
the severity of disease would make the models more powerful. 
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