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Introduction
A survey conducted by the Agency for Healthcare Research 

and Quality (AHRQ) found that in the year 2011 more than 3.3 
million patients were readmitted in the United States within 
30-days of being discharged. Over $250 million was spent on 
treatment of readmitted diabetic patients in 2011 [1]. Current 
practices to identify at-risk diabetic patients are subjective: a 
clinician will assess the patient and decide what the appropriate 
care plan is for that individual. Research has shown that these 
subjective methods for determining readmission are slightly 
better than random guessing [2]. However, there are tools to 
objectively score readmission risk, such as LACE [3]. These 
objective tools are seen to be useful because end-users can make 
these calculations manually and offer improved accuracy over 
subjective techniques. Machine learning models can be used to 
create objective models which then can be used to measure risk 
[4]. These models are more complex, but may be able to create 
more accurate risk predictions that should lead to improved 
diabetic patient outcomes. This study investigates the hypothesis 
that advanced machine learning techniques can make use of a 
wide set of clinical features to improve diabetic readmission 
risk prediction over simpler objective measures like LACE while 
reducing hospital cost. An existing dataset and algorithms are 
used to test this hypothesis. 

 
Background and related work

Many healthcare providers in the U.S. use LACE to identify 
at-risk patients. At its core LACE is a logistic regression model 
that makes use of a small set of features. LACE itself was derived 
from a set of 4812 patients, and validated on 1,000,000 patients 
using patient records from 2004 to 2008 [3].

In addition, numerous previous studies have analyzed the 
risk factors that predict readmission rates of diabetic patients. 
However, much of the research is focused on subsets of diabetic 
populations and solutions are derived from a smaller sample 
size than this study. In some cases, the results were based 
on demographic and socioeconomic factors that influence 
readmission rates [5]. In some cases, the models are unspecific 
in target and focus on general readmission for all-cause [6]. 
Our study considers data that covers demographic, clinical 
procedure-related and diagnostic-related features, as well as 
medication information for all ages to predict readmissions 
for diabetic patients within a 30-day window. We provide 
comprehensive results on features and the model performance 
is superior to those currently in use. Our goal was not an 
analysis of readmission cost as this is well documented by other 
researchers.

Curr Trends Biomedical Eng & Biosci 7(3): CTBEB.MS.ID.555715 (2017) 0055

Abstract

Hospital readmission is considered an effective measurement of care provided within healthcare. Being able to risk identify patients 
facing a high likelihood of unplanned hospital readmission in the next 30-days could allow for further investigation and possibly prevent the 
readmission. Current models, such as LACE, sacrifice accuracy in order to allow for end-users to have a straight forward and simple experience. 
This study acknowledges that while HbA1c is important, it may not be critical in predicting readmissions. It also investigates the hypothesis that 
using machine learning on a wide feature, making use of model diversity, and blending prediction will improve the accuracy of readmission risk 
predictions compared with existing techniques. A dataset originally containing 100,000 admissions and 56 features was used to evaluate the 
hypothesis. The results from the study are encouraging and can help healthcare providers improve inpatient diabetic care.

Keywords: Predictive modeling; 30-day readmission; Hospital readmission; Type 2 diabetes; Diabetes mellitus

http://dx.doi.org/10.19080/CTBEB.2017.07.555715
http://juniperpublishers.com
https://juniperpublishers.com/ctbeb/


Current Trends in Biomedical Engineering & Biosciences  

How to cite this article: Damian M. Predicting Diabetic Readmission Rates: Moving Beyond Hba1c. Curr Trends Biomedical Eng & Biosci. 2017; 7(3): 
555707. DOI: 10.19080/CTBEB.2017.07.555715.0056

In our judgment, our work is the first of its kind structuring 
a machine learning framework, which analyses all age groups 
specifically for the diabetic population and unplanned 
readmissions within a 30-day window. Our study uses a 
considerably larger dataset which is more balanced when 
comparing to previous works. Accordingly, our results appear 
to be more reflective of the problem of unplanned readmissions 
within 30-days of discharge for diabetics of all ages within 
the United States. Other studies have not documented the 
typical performance metrics of machine learning classifiers. 
Our machine learning framework solves a general problem for 
diabetic patients who discharge from the hospital and as a single 
comprehensive solution can be easily implemented [7-15].

In addition to addressing the above gaps in the research, this 
work coves methods to identify potential modifiable risk factors 
leading to readmission rates. Machine learning identification 
of likelihood of readmission is the foundational step to 
understanding and developing protocols for better inpatient 
diabetes care. Our primary aim to have the results presented in 
this study be the baseline for any future work to compare.

Materials and Methods
Data assembly

We performed a secondary analysis of a multicenter 
prospective cohort study conducted between 1999-2008. The 
study involved patients discharged to the community from 130 
hospitals. The data is provided by the Center for Clinical and 
Translational Research, Virginia Commonwealth University and 
is a de-identified abstract of the Health Facts database (Cerner 
Corporation, Kansas City, MO). This data was used to test the 

hypotheses that machine learning could predict the likelihood 
of readmission within the next 30-days for a diabetic patient. 
The data represents 10 years (1999-2008) of clinical care at 
130 hospitals and integrated delivery networks through the 
United States: Midwest (18 hospitals), Northeast (58), South 
(28), and West (16). Most of the hospitals (78) have bed size 
between 100 and 499, 38 hospitals have bed size less than 100, 
and bed size of 14 hospitals is greater than 500. The dataset 
contains 50 features representing patient encounters: patient 
demographics, admission details, diagnoses and procedures (in 
ICD-9-CM format), laboratory data, and pharmacy data. Strack et 
al. [7] originally pulled the dataset to meet the following criteria:

1.  It is an inpatient encounter (a hospital admission).

2.  It is a “diabetic” encounter; that is, one during which 
any kind of diabetes was entered into the system as a 
diagnosis. 

3.  The length of stay was at least 1 day and at most 14 
days.

4.  Laboratory tests were performed during the encounter.

5.  Medications were administered during the encounter. 

In total, there were 101,766 encounters available for analysis 
that satisfy these criteria. Each encounter was labeled with one 
of three classes (“<30”, “>30”, “NO”) based on whether the patient 
was readmitted within 30 days (“<30”), readmitted in more than 
30 days (“>=30”), or did not have a recorded readmission (“NO”). 
Further information about the dataset can be found at http://
www.cioslab.vcu.edu/. (Table 1).

Table 1: List of features and their descriptions in the initial dataset.

Feature Name Description and Values % Missing

Race Values: African American , Asian, Caucasian, Hispanic, and Other

Gender Values: female, male, unknown/invalid

Age Grouped in 10-year intervals: [0-10),[10-20),…,[90,100)

Weight Weight in pounds

Admission type Integer corresponding to 9 distinct values

Discharge disposition Integer identifier corresponding to 29 distinct values

Admission source Integer identifier corresponding to 21 distinct values

Time in hospital Integer number of days between admission and discharge

Payer code Integer identifier corresponding to 23 distinct values

Medical specialty Integer identifier of a specialty of the admitting physician, corresponding to 894 
distinct values

Number of lab procedures Number of lab tests performed during the encounter

Number of procedures Number of lab test performed during the encounter

Number of medications Number of distinct generic names administered during the encounter

Number of outpatient visits Number of outpatient visits of the patient in the year preceding the encounter

Number of emergency visits Number of emergency visits of the patient in the year preceding the encounter

Number of inpatient visits Number of inpatient visits of the patient in the year preceding the encounter
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Diagnosis 1 The primary diagnosis

Diagnosis 2 Secondary diagnosis

Diagnosis 3 Additional secondary diagnosis

Number of diagnosis Number of diagnoses entered to the system

Glucose serum test result Indicates the range of the result or if the test was not taken

A1c test result
Indicates the range of the result or if the test was not taken. Values: “>8” if the 

result was greater than 8%, “>7” if the results was greater than 7% but less than 
8%, “normal” if the result was less than 7%, and empty if not measured.

Change of medications Indicates if there was a change in diabetic medications (could be dosage or 
generic name). Values: “change” and “no change”

Diabetes medications Indicates if there was any diabetic medication prescribed. Values: “yes” and “no”.

24 features for medications

For the generic names: metformin, repaglinide, nateglinide, chlorpropamide, 
glimepiride, acetohexamide, glipizide, glyburide, tolbutamide, pioglitazone, 

rosiglitazone, acarbose, miglitol, troglitazone, tolazamide, examide, sitagliptin, 
insulin, glyburide-metformin, glipizide-metformin, glimepiride-piglitazone, the 
feature indicates whether the drug was prescribed or there was a change in the 
dosage. Values: “up” if the dosage was increased during the encounter, “down” if 
the dosage was decreased, “steady” if the dosage did not change, and “no’ if the 

drug was not prescribed.

Readmitted within 30-days Days to inpatient readmission. Values: “1” if the patient was readmitted in less 
than 30 days and “0” for no record of readmission. 0%

Data pre-processing
The original dataset was not ideally suited for a machine 

learning approach. In particular, we removed the “encounter ID” 
and “patient nbr” to avoid over fitting the model. Additionally, it 
would have been useful to have actual age and actual weight of 
the patient. While there were techniques used to work around 

these issues, none proved useful in testing. One of the more 
significant changes was enriching the dataset with “diagnosis 
groups”: (Table 2). Finally, since this study is concerned with 
readmissions of patients with diabetes mellitus within a 30-day 
period from hospital discharge, we relabeled the target variable 
“1” for encounters that were marked “<30” and “0” otherwise 
[16-20]. 

Table 2: Values for diagnosis in the final dataset. In the analysis, groups that covered less than 3.5% of encounters were grouped into the 
“other” category.

Group Name ICD-9 Codes Descriptions

Circulatory 390-459,785 Diseases of the circulatory system

Respiratory 460-519,786 Diseases of the respiratory system

Digestive 520-579,787 Diseases of the digestive system

Diabetes 250.xx Diabetes mellitus

Injury 800-999 Injury and poisoning

Musculoskeletal 710-739 Diseases of the musculoskeletal system and connective tissue

Genitourinary 580-629,788 Diseases of the genitourinary system

Neoplasms 140-239 Neoplasms

780,781,784,790-799 Other symptoms, signs, and ill-defined conditions

240-279, excluding 250 Endocrine, nutritional, and metabolic diseases and immunity disorders, without 
diabetes

680-709,782 Diseases of the skin and subcutaneous tissue

001-139 Infectious and parasitic diseases

Other 290-319 Mental disorders

E-V External causes of injury an supplemental classification

280-289 Diseases of the blood and blood-forming organs

320-359 Disease of the nervous system

630-679 Complications of pregnancy, childbirth, and the puerperium

360=389 Diseases of the sense organs

740-759 Congenital anomalies
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Preliminary analysis and the final dataset
Our analysis demonstrates that there are unique diabetic 

readmission profiles within the following age groups:
Age Group Description

[0-30) From 0 to 29 years old

[30-70) From 30 to 69 years old

[70-100) From 70 to 99 years old

We are making the original dataset inclusive with data 
augmentation and enrichment available (https://www.
researchgate.net/publication/312493339_Diabetic_30-Day_
Unplanned_Readmission_by_Age_Group). Each of the groups 
has its own set of unique characteristics that we utilized when 
building our machine learning framework.

Machine learning methods
Classification: Identification of high-risk diabetic patients 

was posed as the problem of classifying whether a patient would 
be readmitted within 30-days of being discharged. Best practice 
is to make use of several machine learning algorithms, which is 

part of this study. Prior to training the classification algorithms, 
we randomly split our dataset into two distinct sets – the training 
and the test set. The training and test set consisted of 75% and 
25% of the data. The parameters of each algorithm were chosen 
based on the classification performance evaluated by 10-fold 
cross-validation on the training set. The performance of all 
algorithms was evaluated on the test set. Each age group was 
treated as a subset of the entire available diabetic population, 
however the final models for each age group are viewed as 
independent of each other [21-29].

The configuration for the [0-30) age group was uniquely 
created within the machine learning model framework to 
optimize understanding from the diabetic profile of this patient 
population (Figure 1). The data represented in the graph above 
is all the patient encounters that meet the single criteria of 
age, [00-30). The data is treated as three distinct datasets and 
preprocessing is completed with a single model as the focus. 
As each model experiences each diabetic patient encounter, it 
will make a prediction that will be stored until an ensemble is 
created. 

Figure 1: Machine learning configuration for age group (0-30).

The models include: 

1. Extreme Gradient Boosted Trees- we made use of 
ordinal encoding of categorical variables and missing 
value imputations. 

2. Gradient Boosted Greedy Trees Classifier- we 
implemented One-Hot Encoding, univariate credibility 
estimates with Elastic Net, category count, missing 
value imputations, search for differences, and search for 
ratios. 

3. Extra Trees Classifier (Gini)- we utilized One-Hot 
Encoding, univariate credibility estimates with Elastic 
Net, missing value imputations, search for differences, 
and search for ratios.

The ensemble of all models for [0-30) was averaged using 
the following

A= 1/n×∑_(i=1)^n▒x_i 
Table 3: Summary of measures for configuration for (0-30).

Measure Value

F1 Score 0.4213

Sensitivity 0.4978

False Positive Rate 0.1081

Specificity 0.8919

Precision 0.3651

Negative Predictive Value 0.9343

Accuracy 0.8481

Matthews Correlation Coefficient 0.3416
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where A equals average, n equals the number of models 
being averaged, and x_i equals the predicted probability of 
each patient encountered. Other important measures for this 
ensemble are: (Table 3).

Configuration for (30-70): The machine learning framework 
produced a model for the (30-70) age group, which is the most 
complex of three age groups. There was a total of 8 different 
models averaged together to produce a final output (Figure 2).

Figure 2: Machine learning configuration for age group (30-70) with 10-fold cross-validation.

Although a few of the 8 models seem the same, there are 
unique preprocessing steps with each model, along with Grid 
Search, to create a different perspective of the same machine 
learning task.

1. Random Forest Classifier (Gini): ordinal encoding 
of categorical variables, a converter for text mining, 
auto-tuned word N-Gram text modeler using token 
occurrences, and missing values imputation.

2. Extreme Gradient Boosted Trees Classifier with Early 
Stopping: ordinal encoding of categorical variables, 
converter for text mining, auto-tuned word N-gram 
text modeler using token occurrences, missing values 
imputed.

3. Nystroem Kernel SVM Classifier: One-Hot Encoding, 
converter for text mining, auto-tuned word N-gram text 
modeler using token occurrences, transform on the link 
function scale, standardized, missing value imputation, 
Ridit.

4. Balanced Random Forest Classifier (Entropy): Ordinal 
encoding of categorical variables, category count, 
converter for text mining, auto-tuned word-n-gram 
text modeler using token occurrences, missing values 
imputed.

5. Gradient Boosted Trees Classifier with Early Stopping: 
Ordinal encoding of categorical variables, category 
count, converter for text mining, auto-tuned word-N-
gram text modeler using token occurrences, missing 

values imputed.

6. Gradient Boosted Greedy Trees Classifier with Early 
Stopping: One-Hot Encoding | Univariate credibility 
estimates with Elastic Net | Category Count | Converter 
for Text Mining | Auto-Tuned Word N-Gram Text 
Modeler using token occurrences | Missing Values 
Imputed | Balanced ExtraTrees Classifier (Gini) | Search 
for differences | Search for ratios | Gradient Boosted 
Greedy Trees Classifier with Early Stopping

7. Extreme Gradient Boosted Trees Classifier with Early 
Stopping: Ordinal encoding of categorical variables 
| Category Count | Converter for Text Mining | Auto-
Tuned Word N-Gram Text Modeler using token 
occurrences | Missing Values Imputed | Balanced Extra 
Trees Classifier (Gini) | Search for differences | extreme 
Gradient Boosted Trees Classifier with Early Stopping

8. Extreme Gradient Boosted Classifier with Early 
Stopping: Ordinal encoding of categorical variables | 
Matrix of word-grams occurrences | Pair wise Cosine 
Similarity | Converter for Text Mining | Auto-Tuned 
Word N-Gram Text Modeler using token occurrences 
| Missing Values Imputed | extreme Gradient Boosted 
Trees Classifier with Early Stopping

The ensemble method to average the 8 predicted 
probabilities for each diabetic patient by encounter is the same 
as the [0-30) equation. Below are other important measures for 
this age group: (Table 4).
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Table 4: Summary of measures for configuration for [30-70) with 10-
fold cross-validation.

Measure Value

F1 Score 0.3001

Sensitivity 0.4363

False Positive Rate 0.1738

Specificity 0.8262

Precision 0.2288

Negative Predictive Value 0.9254

Accuracy 0.785

Matthews Correlation Coefficient 0.2012

Our machine learning framework produced another set of 3 
models that captured well the underlying data pattern for age 

group [70-100). Although it is the same number of models as 
[00-30), the models themselves are different (Figure 3). 

Tree top models resulted in the best model performance 
of those we tested. The below models demonstrate the 
preprocessing that was completed before sending as input to the 
models themselves.

Balanced Extra Trees Classifier (Gin): One-Hot Encoding 
| Univariate credibility estimates with Elastic Net | Converter 
for Text Mining | Auto-Tuned Word N-Gram Text Modeler using 
token occurrences | Missing Values Imputed | Balanced Extra 
Trees Classifier (Gini) | Search for differences | Search for ratios 
| Balanced Random Forest Classifier (Gini)

Figure 3: Machine learning configuration for age group (70-100).
 

Extreme Gradient Boosted Trees Classifier with Early 
Stopping: Ordinal encoding of categorical variables | Category 
Count | Converter for Text Mining | Auto-Tuned Word N-Gram 
Text Modeler using token occurrences | Missing Values Imputed 
| Balanced Extra Trees Classifier (Gini) | Search for differences | 
extreme Gradient Boosted Trees Classifier with Early Stopping

Extreme Gradient Boosted Trees Classifier with Early 
Stopping: Ordinal encoding of categorical variables | Matrix of 
word-grams occurrences | Pair wise Cosine Similarity | Converter 
for Text Mining | Auto-Tuned Word N-Gram Text Modeler using 
token occurrences | Missing Values Imputed | extreme Gradient 
Boosted Trees Classifier with Early Stopping

Unique to this final model was the concept of meta-model 
approach-to use model outputs of 1,2, and 3 for the (70-100) 
age group as input into an Elastic-Net Classifier (L1/ Binomial 
Deviance). This type of classifier is based on block coordinate 
descent. Elastic Net is an extension of logistic regression where 
the optimizer makes an attempt to find a parsimonious model by 
having a preference for simpler models. In this context, simpler 
is defined as having coefficients with smaller absolute values 
as well as fewer non-zero coefficients. In practice, this helps 

the model deal with co-linear variables and can also produce 
models that are less prone to over fitting and generalize better 
to new data. Elastic-Net is useful in machine learning problems 
where there are multiple features that are correlated with one 
another. For completeness, we provide the additional important 
measures and their corresponding values to compare with the 
other final models produced for age groups (00-30), (30-70), 
and (70-100): (Table 5).

Table 5: Summary of measures for configuration for (30-70) with 10-
fold cross-validation.

Measure Value

F1 Score 0.2694

Sensitivity 0.4902

False Positive Rate 0.2889

Specificity 0.7111

Precision 0.1857

Negative Predictive Value 0.9121

Accuracy 0.6849

Matthews Correlation Coefficient 0.1403
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Feature analysis
In our study we decided to augment and enrich the original 

features in an effort to maximize the signal provided in each age 
group. We implemented several engineered features that we 

either gained intuition about through the initial study of the data 
or through the domain expertise of clinicians. While this table 
does not represent all that can be done with this data, it does 
represent what we studied: (Table 6).

Table 6: List of engineered features and their descriptions in the construction of machine learning models.

Feature Name Description and Values

Add_outpatient_inpatient Adding together the number of outpatient and inpatient values

Div_emergency_labeProcedures_medications Dividing the number of emergency visits by the sum of lab procedures and medications

Diag_1_name Short text descriptions for ICD-9 codes for primary diagnosis

G_mult_outpatient_inpatient Multiply encounter values for “outpatient” and “inpatient”

G_lab Procedures_medications Concatenating the number of lab procedures with the number of medications

G_average Diag Arithmetic mean of numeric values: diag_1, diag_2, and diag_3. In the event of an alpha-numeric 
diag code the remaining values will be averaged.

Admit_type_descr Short text description for admit type.

8 features for Admit Type Binary values for 1 of 8 admit types.

TiH_medical Speciality Concatenated values from “Time In Hospital” and “Medical Specialty”

G_missing_values A row-wise count of the number of missing values for a specific encounter.

Result_Medical Specialty Concatenated values from “A1Cresult” and “Medical Specialty”

MedSpec_Discharge Concatenated values from “medical specialty” and “Discharge”

Race_Discharge Concatenated values from “Race” and “Discharge

Discharge_TiH Concatenated values from “Discharge” and “Time In Hospital”

Admission_source_description Short text description of admission source

Diag_2_name Short text descriptions for ICD-9 codes for secondary diagnosis

Diag_3_name Short text descriptions for ICD-9 codes for additional secondary diagnosis

Because various machine learning models induce learning 
from a variety of perspectives (information-based, similarity-
based, probability-based, error-based), it was important to 
select features that provided the greatest context for each 
machine learning model. In our case, feature selection proved to 
be significant in improving model performance in all three age 
groups for diabetic patients. No age group had the exact same 
feature importance ascribed to the same top 5 features. As can 
be seen below in Table 7-9, items in bold are unique within the 
top 5 ranked features across all models. The final model for the 

age group [0-30) worked with over 74 features. We ranked the 
top 5 features for this model by informativenes show informative 
they are relative to the other features of that age group: [8]. The 
“Number of emergency” feature and the feature engineered 
by dividing the number of emergency visits by the sum of lab 
procedures plus medications were both unique among all three 
models: In the case of the age group (30-70) final model, we 
worked with 79 features that shared the same features as the 
(70-100} age group

Table 7: Ranked list of features for age group [00-30).

Rank_1 Rank_2 Rank_3 Rank_4 Rank_5

Number Inpatient Add Outpatient and Inpatient 
values together Diagnosis Code 1 Number 

Emergency
Divide Emergency by the sum of Lab 

Procedures and Medications

Table 8: Ranked list of features for age group [30-70).

Rank_1 Rank_2 Rank_3 Rank_4 Rank_5

Number Inpatient Add Outpatient and 
Inpatient values together

Medical Specialty Concatenated 
with Discharge Code Diagnosis Code 1 Discharge Disposition Description

Table 9: Ranked list of features for age group [70-100).

Rank_1 Rank_2 Rank_3 Rank_4 Rank_5

Medical Specialty Concatenated 
with Discharge Code

Discharge Concatenated with 
Time in Hospital

Race Concatenated with 
Discharge

Discharge Disposition 
Description Number Inpatient

Like the age group [00-30), the age group (70-100) resulted 
in two unique features ranking in the top 5 out of 79 features. 

They were the concatenation of discharge disposition with time 
in hospital and concatenation of race with discharge disposition:
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It is significant that all models did not utilize “A1c” results 
from patients when making a predication for unplanned hospital 
readmissions. In our study we see that only very few clinicians 
perform the measurement of HbA1c (18.4%) in the inpatient 
setting. Many researchers suggest that further attention to the 
HbA1c by a clinician before a diabetic patient is discharged from 
the hospital may prove helpful in patient outcomes and lower 
cost of inpatient care [7]. In our study, we aimed to develop 
learning models that could be predictive without the HbA1c 
measurement, the primary reason being clinician judgment and 
hospital protocols vary greatly.

Evaluation method
Each algorithm was evaluated using a 10-fold stratified cross-

validation. Cross-validation is an evaluation technique where 
the dataset is randomly but evenly distributed into a number of 
fold (this study-10). The learning algorithm is trained on all but 
one of the folds and tested on the held-out fold. This repeated for 
each possible holdout fold. Stratified cross-validation attempts 
to preserve the class distribution between folds so that each fold 
is representative of the date full dataset. The process of cross-
validation is repeated ten times to ensure that particular random 
initialization does not bias the overall result.

All algorithms were evaluated using the area-under-
the-curve (AUC), which is equivalent to the c-statistic in this 
binary classification scenario. The AUC is the probability that a 
randomly chosen positive instance (this study, “<30” represented 
as “1”) ranks higher than a randomly chosen negative one (this 
study, “0”). An AUC of 0.5 or less indicates that the algorithm is 
not better than a random guess while an AUC of 1.0 indicates 
perfect classification. Previous research in readmission risk has 
achieved AUCs between 0.5 and 0.7.

AUC is a graphical plot that illustrates the performance of a 
binary classifier system as its discrimination threshold is varied. 
It is created by plotting the fraction of true positives out of the 
positives vs the fraction of false positives out of the negatives, at 
various threshold settings. TPR is also known as sensitivity, and 
FPR is one minus the specificity or true negative rate. In all cases 
our machine learning models are compared to the LACE index 
AUC, calculated by comprising a threshold of each index value to 
the true positive and false positives achieved by that threshold. 

LACE index scoring tool for risk assessment of hospital 
readmission

LACE is seen as the current in-use solution for readmissions 
for the U.S. One considerable benefit to LACE is the 
interpretability of the index itself. While many hospitals use the 
index in a computer assisted way, manual calculation is certainly 
possible. Further work is required to identify additional factors 
that may increase the discrimination or accuracy of the index. 
LACE is known to have limitations in that it was derived over a 
small sample size which may prevent it from being useful in the 
hospitals population if they do not overlap. 

There are four steps to calculating the LACE Score Risk of 
Readmission [3]:

Step 1: Length of stay (including day of admission and 
discharge) days

Length of stay (days) Score

1 1

2 2

3 3

6-Apr 4

13-Jul 5

14 or more 7

Step 2: Acuity of Admission

If you can answer “yes” to the question,” Was the patient 
admitted to the hospital via the emergency department?” then 
you can add “3” to the LACE Score from step 1.

Step 3: Comorbidities

The patient may have multiple comorbidities. If the total 
score in this section is between 0 and 3 then “3” should be added 
to the LACE Score. If the score is ≥4 than “5” is added to the LACE 
Score. Additional information about what is meant by these 
conditions is in Appendix A.

Condition Score

Previous myocardial 
infarction +1

Cerebrovascular disease +1

Peripheral vascular disease +1

Diabetes without 
complications +1

Congestive heart failure +2

Diabetes with end organ 
damage +2

Chronic pulmonary disease +2

Mild liver or renal disease +2

Any tumor (including 
lymphoma or leukemia) +2

Dementia +3

Connective tissue disease +3

AIDS +4

Moderate or severe liver or 
renal disease +4

Metastatic solid tumor +6

Step 4: Emergency Department Visits

Determine how many times the patient has visited an 
emergency department in the six months prior to admission 
(not including the emergency department visit immediately 
preceding the current admission) and ad that figure to the LACE 
score. However, in cases where the visits are => 4 then add only 
“4” to the LACE score. Once LACE steps 1 through 4 are complete, 
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then total the score. If in total a patient receives a LACE Score of 
≥10 then the patient is labeled “high risk for readmission.” LACE 
attempts to lessen the burden for clinicians by requiring only a 
very few number of features that can be found within a patient’s 
record. The non-condition specific nature of LACE, as it relates 
to diabetes mellitus and its simple approach, renders the result 
slightly better than random.

Cost analysis
It is well known that hospital readmissions are costly to the 

healthcare system. Research shows that the cost of readmission 
of diabetes mellitus and its complications is $251 million for 
23,700 total readmissions. Hence the cost per readmission is 
approximately equal to $10,591 [1]. In this secondary analysis 

the average length of stay for the diabetic patient encounter is 
4.396 days, leading us to believe the cost for one-day admission 
is considered to be $2,409. 

This is of particular importance to develop costing models 
around the benefit of having a proper machine learning solution 
delivered to hospital clinicians in a low-tech way. By establishing 
a one-day review of a patient before actual discharge there 
could be risk-reward trade-off that would be appealing to many 
healthcare settings. 

Results and Discussion
The results from performing 10-fold cross-validation are 

presented in (Table 10 & 11):

Table 10: Comparison of model performance.

Age Group Model Description AUC

[0-30) Ensemble Average 0.79

[30-70) Ensemble Average 0.70

[70-100) Meta Model (Elastic Net) 0.65

All Age Groups LACE 0.56

Table 11: List of conditions, definitions, and notes for LACE comorbidities.

Condition Definition and/or Notes

Previous myocardial infarction Any previous definite or probable myocardial infarction

Cerebrovascular disease Any previous stroke or transient ischemic attack (TIA)

Peripheral vascular disease Intermittent claudication, previous surgery or stenting, gangrene or 
acute ischemia, untreated abdominal or thoracic aortic aneurysm

Diabetes without microvascular complications No retinopathy, nephropathy or neuropathy

Congestive heart failure Any patient with symptomatic CHF whose symptoms have responded 
to appropriate medications

Diabetes with end organ damage Diabetes with retinopathy, nephropathy or neuropathy

Chronic pulmonary disease ??

Mild liver or renal disease Cirrhosis but no portal hypertension (i.e., no varices, no ascites) OR 
chronic hepatitis

Chronic Renal Disease

Any tumor (including lymphoma or leukemia) Solid tumors must have been treated within the last 5 years; includes 
chronic lymphocytic leukemia (CLL) and polycythemia vera (PV)_

Dementia Any cognitive deficit??

Connective tissue disease
Systemic lupus erythematosus (SLE), polymyositis, mixed connective 

tissue disease, moderate to severe rheumatoid arthritis, and 
polymyalgia rheumatica

AIDS AIDS-defining opportunistic infection or CD4 < 200

Moderate or severe liver or renal disease Cirrhosis with portal hypertension (e.g., ascites or variceal bleeding)

End stage Renal Disease, Hemodialysis or Peritoneal Dialysis

Metastatic solid tumor Any metastatic tumor

In conclusion, while providers of care may make the decision 
not to obtain a measurement of HbA1c for patients with diabetes 
mellitus during the stay at the hospital, there exist other useful 
predictors of readmission rates that may prove valuable in the 
development of strategies to reduce readmission rates and 
associated costs for the care of these individuals. Our machine 
learning approach yielded a 26% improvement using over 

100,000 patient encounters from 130 U.S. hospitals over a 10-
year period compared to LACE, which was derived from 4,800 
patients over a 4-year period.

Conclusion and Future Work
Our research suggests that applying a machine learning 

approach to a larger feature set as well as novel approaches to 
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model diversity and model blending can improve on simpler 
readmission models such as LACE, potentially improving patient 
outcomes and lowering inpatient cost to hospitals. The highest 
performing models were those developed around age groups 
rather than a general “all” age group. This study targets diabetic 
patients only; however, we believe this early work sets the stage 
for further research to improve the accuracy of readmission risk 
for other top health conditions like heart disease, Schizophrenia, 
COPD, etc. An improved dataset, one that includes other critical 
features such as age, weight, and lab values, could prove valuable 
and are worth further study. Additional discovery may exist in 
modeling by condition group name (circulatory, respiratory, 
diabetes) as a primary condition. Also, suggesting a “next step” 
in transitions of care (home health, SNF, rehab facility) for a 
patient’s optimal outcome may prove useful within healthcare.
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